Multi-Terminal Spin Valve on Channels with Spin-Momentum Locking

نویسندگان

  • Shehrin Sayed
  • Seokmin Hong
  • Supriyo Datta
چکیده

It is experimentally established that charge current flowing in a channel with spin-momentum locking such as topological insulator surface states or Rashba interfaces induces a spin voltage, which can be electrically measured with a ferromagnetic contact along the current path. Using this fact in conjunction with Onsager reciprocity arguments, we make the surprising prediction that the anti-parallel resistance of a spin valve can be either larger or smaller than the parallel resistance depending on the direction of spin flow relative to the direction of spin-momentum locking. However, we argue that this remarkable signature of spin-momentum locking can only be observed in multi-terminal measurements. Two-terminal measurements in the linear response regime, will show a single anti-parallel resistance larger than the parallel resistance as commonly observed in channels without spin-orbit coupling. We support this result with detailed numerical calculations based on a semiclassical model that provides insight into the underlying physics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological insulator based spin valve devices: Evidence for spin polarized transport of spin-momentum-locked topological surface states

Spin-momentum helical locking is one of the most important properties of the nontrivial topological surface states (TSS) in 3D topological insulators (TIs). It underlies the iconic topological protection (suppressing elastic backscattering) of TSS and is foundational to many exotic physics (e.g., majorana fermions) and device applications (e.g., spintronics) predicted for TIs. Based on this spi...

متن کامل

Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3.

Topological insulators exhibit metallic surface states populated by massless Dirac fermions with spin-momentum locking, where the carrier spin lies in-plane, locked at right angles to the carrier momentum. Here, we show that a charge current produces a net spin polarization via spin-momentum locking in Bi2Se3 films, and this polarization is directly manifested as a voltage on a ferromagnetic co...

متن کامل

Spin Circuit Model for 2D Channels with Spin-Orbit Coupling

In this paper we present a general theory for an arbitrary 2D channel with "spin momentum locking" due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of th...

متن کامل

Electrical Detection of the Helical Spin Texture in a p-type Topological Insulator Sb2Te3

The surface states of 3D topological insulators (TIs) exhibit a helical spin texture with spin locked at right angles with momentum. The chirality of this spin texture is expected to invert crossing the Dirac point, a property that has been experimentally observed by optical probes. Here, we directly determine the chirality below the Dirac point by electrically detecting spin-momentum locking i...

متن کامل

Spin injection and inverse Edelstein effect in the surface states of topological Kondo insulator SmB6

There has been considerable interest in exploiting the spin degrees of freedom of electrons for potential information storage and computing technologies. Topological insulators (TIs), a class of quantum materials, have special gapless edge/surface states, where the spin polarization of the Dirac fermions is locked to the momentum direction. This spin-momentum locking property gives rise to very...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016